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Symbolic music
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Tasks
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Piano Inpainting Application (Hadjeres et al.)

MUSIC GENERATION

MT3 (Gardner et al.)

MUSIC TRANSCRIPTION

(Schedl et al.)

MUSIC INFORMATION RETRIEVAL (MIR)



File formats
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• .abc


• MusicXML


• MIDI


• Tracks and instruments


• Tempos, time Signatures


• Effects (sustain pedal, pitch bend …)
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Abc notation MusicXML



Music as pianorolls
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• Matrix with time and pitch dimensions / axis


• Used as an image with continuous models (CNN)


• MuseGan (Dong et al.)


• Coconet (Huang et al.)


• Arguably limited in terms of information represented


• And in results: continuous models doesn’t perform well with 
discrete modalities
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Pianoroll representation



Music as sequence of tokens
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• The note attributes and time are serialized into tokens


• Notes: pitch, velocity, duration or NoteOff


• Time: TimeShift or Bar and Position


• Additional information : Tempo, Time Signature…


• The set of all known tokens is called the vocabulary


• Used with discrete sequential models (RNN, Transformers)


• Music Transformer (Anna Huang et al.)


• Pop Music Transformer (Yu-Siang Huang et al.)


• Figaro (Von Rütte et al.)
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Sheet music and its « MIDI-Like » token sequence equivalent



How to tokenize Music
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Several ways to tokenize music
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• Unlike text, many ways —> more freedom but implies to make choices
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MIDI-Like 
(Huang et al.)

REMI

(Huang et al.)



Decomposing music tokenization
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• Time: using TimeShift to indicate time movements or Bar/Position to indicate new bars and the 
current time within the current one;


• Note duration: using explicit Duration tokens, or NoteOff tokens indicating when notes end;


• Pitch: using explicit Pitch tokens, or representing pitch intervals between consecutive notes;


• Multitrack: how to represent multiple instruments / tracks simultaneously;


• Additional information: tempo, time signature, effects…;


• Downsampling: how the information is « downsampled »;


• Sequence compression: any way to reduce the sequence length.
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A zoom on downsampling
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• Corresponds to the « level of detail » to represent the information


• Time, velocity, effects are « semi-continuous » in MIDI files —> we need to discretize the information


• Pitch, Velocity (128 possible values) —> can be downsampled to a reduced number of values


• Time: the time resolution of MIDI files can be up to 480 ticks (samples) per beat


• It is crucial to downsample the time to a lower resolution (e.g. 8 samples per beat)
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MidiTok
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• Open source Python package to tokenize symbolic music


• Implements the most popular tokenizations, under a unified API / 
workflow


• Offers great flexibility over downsampling, additional tokens, BPE…


• Can be used with any model, for any task


• Introduced at ISMIR 2021, has since become established


• GitHub: github.com/Natooz/MidiTok


• Documentation: miditok.readthedocs.io 


• Installation: pip install miditok
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from miditok import REMI, TokenizerConfig
from miditoolkit import MidiFile

# Creating a multitrack tokenizer
config = TokenizerConfig(

nb_velocities=16,
use_chords=True,
use_programs=True)

tokenizer = REMI(config)

# Loads a midi, converts to tokens, and back to a MIDI
midi = MidiFile(‘path/to/your_midi.mid')
# automatically detects MIDIs, paths and tokens
tokens = tokenizer(midi)
converted_back_midi = tokenizer(tokens)

http://github.com/Natooz/MidiTok
http://miditok.readthedocs.io


Different tokenizations yield different results
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Focus on time and note duration
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Duration NoteOff

TimeShift

Bar + 
Position



Generation: distribution of note features
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• TimeShift + Duration —> even 
onset positions


• In all cases we see a decreasing 
density of high positions, which 
is accented with Bar / Position


• NoteOff —> Longer durations


• Because the models can 
« forget » the notes previously 
being played
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Unended notes with NoteOff tokens
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Continuation of the same prompt with the four strategies during training Distribution (density) of note durations in beat



Byte Pair Encoding : improving model efficiency 
and results
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The problem of unused embedding space
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• Embedding vectors are contextually 
learned by the model to represent 
the information carried by the tokens


• Embedding of size d (512 to 2048)


• In music, vocabularies contain often 
below 500 tokens


• More than one dimension per tok.


• Sub-optimal use of space


• In NLP vocabulary sizes are between 
30k and 50k tokens
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A T-SNE [1] representation of learned 
word embeddings



The problem of sequence length
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• Music is tokenized into large sequence lengths


• 2 or 3 tokens per note


• The complexity of Transformer models grows 
quadratically with the input sequence length


• The « scope » of music is short


• And / or model efficiency is bad


• The problem has been tackled by methods merging 
embeddings


• Limited / constraining in practice
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Sheet music and its « MIDI-Like » token sequence equivalent

Architecture of Compound Word Transformer (Hsiao et al.)



Byte Pair Encoding (BPE)
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• Compression technique (Philip Gage) that 
iteratively replaces the most recurrent successive 
bytes of a corpus by newly created symbols


• Increase the vocabulary while reducing 
(compressing) the sequence length


• Widely used in NLP to build vocabularies of words 
from corpuses of characters (Sennrich et al.)


• Words are the most recurrent byte successions


• Can tackle both the sequence length and 
embedding space usage problems
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Sequence length reduction
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Sequence length reduction
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Better and faster generation
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• Generated examples here (anonymized URL): ugtqphgirx.github.io/bpe-symbolic-music/

http://ugtqphgirx.github.io/bpe-symbolic-music/


Better and faster generation
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• Generated examples here (anonymized URL): ugtqphgirx.github.io/bpe-symbolic-music/

http://ugtqphgirx.github.io/bpe-symbolic-music/


A better usage of embedding space
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Use BPE!
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• Faster training and generation


• Better results, better use of model space


• Already fully implemented in MidiTok, backed by 🤗tokenizers (superfast Rust implementation)


• Slightly longer tokenization / detokenization
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Any questions?

Thank you
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