Deep Learning for Symbolic Music Modeling Séminaire Musique & IA - Université d'Angers

Background

Mama

Album for the Young, Opus 39, Number 4

F#S G

© SilverTonalities 2008

Symbolic music

Output layer

music 134 135 134 137 content Examples: - rhythm - timbre - melody - harmony -loudness 1/16 Piano Inpainting Application (Hadjeres et al.)

MUSIC GENERATION

Tasks

MUSIC INFORMATION RETRIEVAL (MIR)

(Schedl et al.)

MUSIC TRANSCRIPTION

MT3 (Gardner et al.)

File formats

X:1 T:Speed the Plough M:4/4 C:Trad. K:G |:GABc dedB|dedB dedB|c2ec B2dB|c2A2 A2BA| GABc dedB|dedB dedB|c2ec B2dB|A2F2 G4:| |:g2gf gdBd|g2f2 e2d2|c2ec B2dB|c2A2 A2df| g2gf g2Bd|g2f2 e2d2|c2ec B2dB|A2F2 G4:|

- .abc
- MusicXML
- MIDI
 - Tracks and instruments
 - Tempos, time Signatures
 - Effects (sustain pedal, pitch bend ...)

Abc notation

<note> <pitch> <step>E</step> <alter>-1</alter> <octave>4</octave> </pitch> <duration>2</duration> <type>half</type> </note>

MusicXML

	STATUS								DATA 1 (if needed)									DATA 2 (if neede						
	1	t	t	t	n	n	n	n	0	x	x	x	x	x	x	x	0	x	x	x	x	x		
HEX	STATUS	Ту	pe	of	(V.	Chan 1- alue	inel : 16 s 0-1	#	DATA		D	ata (0	Va -12	lue 7)	1		DATA		D	ata (0	Va -12	lue 7)		
0x8n	1	0	0	0	No	te (DFF	-																
0x9n	1	0	0	1	No	te (DN																	
0xAn	1	0	1	0	Po	lyp	hor	nic /	Afte	rto	uch													
0xBn	1	0	1	1	Co	ntre	ol C	hai	nge	(C	C)	ł	СН	IAN	NE	LV	OIC	EN	IES	SA	GE	s		
0xCn	1	1	0	0	Pro	ogra	am	Cha	ang	e	Ċ.		(CC Controllers 120-127 reserved for											
0xDn	1	1	0	1	Ch	anr	nel .	Afte	erto	uch	1		CH	ANN	ELN	NOD	EME	SSA	GES)				
0xEn	1	1	1	0	Pit	ch	Wh	eel																
0xFn	1	1	1	1	SY	STI	EM	ME	SSA	GE		\rightarrow	Co	mn	nor	, R	eal-	Tim	e, E	xc	lusi	ve		

Music as pianorolls

- Matrix with time and pitch dimensions / axis
- Used as an image with continuous models (CNN)
 - MuseGan (Dong et al.)
 - Coconet (Huang et al.)
- Arguably limited in terms of information represented
- And in results: continuous models doesn't perform well with discrete modalities

Pianoroll representation

Music as sequence of tokens

- The note attributes and time are serialized into tokens
 - Notes: pitch, velocity, duration or NoteOff
 - Time: TimeShift or Bar and Position
 - Additional information : Tempo, Time Signature...
- The set of all known tokens is called the **vocabulary**
- Used with discrete sequential models (RNN, Transformers)
 - Music Transformer (Anna Huang et al.)
 - Pop Music Transformer (Yu-Siang Huang et al.)
 - Figaro (Von Rütte et al.)

Sheet music and its « MIDI-Like » token sequence equivalent

How to tokenize Music

• Unlike text, many ways —> more freedom but implies to make choices

Deep Learning for Symbolic Music Modeling

Several ways to tokenize music

Decomposing music tokenization

- current time within the current one;
- Note duration: using explicit Duration tokens, or NoteOff tokens indicating when notes end;
- **Pitch:** using explicit Pitch tokens, or representing pitch intervals between consecutive notes; •
- Multitrack: how to represent multiple instruments / tracks simultaneously;
- Additional information: tempo, time signature, effects...;
- **Downsampling:** how the information is « downsampled »; •
- Sequence compression: any way to reduce the sequence length. •

• **Time:** using TimeShift to indicate time movements or Bar/Position to indicate new bars and the

A zoom on downsampling

- Corresponds to the « level of detail » to represent the information
- Time, velocity, effects are « semi-continuous » in MIDI files —> we need to **discretize** the information
- Pitch, Velocity (128 possible values) \rightarrow can be downsampled to a reduced number of values •
- Time: the time resolution of MIDI files can be up to 480 ticks (samples) per beat
 - It is crucial to downsample the time to a lower resolution (e.g. 8 samples per beat)

A zoom on downsampling

Deep Learning for Symbolic Music Modeling

NATHAN FRADET - 25 SEPT. 2023

MidiTok

- Open source Python package to tokenize symbolic music
- Implements the most popular tokenizations, under a **unified** API / • workflow
- Offers great flexibility over downsampling, additional tokens, BPE...
- Can be used with any model, for any task
- Introduced at ISMIR 2021, has since become established •
- GitHub: github.com/Natooz/MidiTok •
- **Documentation:** <u>miditok.readthedocs.io</u> •
- **Installation**: *pip install miditok* •

NATHAN FRADET - 25 SEPT. 2023

from miditok import REMI, TokenizerConfig from miditoolkit import MidiFile

Creating a multitrack tokenizer config = TokenizerConfig(nb_velocities=16, use_chords=True, use_programs=True) tokenizer = REMI(config)

Loads a midi, converts to tokens, and back to a MIDI midi = MidiFile('path/to/your_midi.mid') # automatically detects MIDIs, paths and tokens tokens = tokenizer(midi) converted_back_midi = tokenizer(tokens)

13

Different tokenizations yield different results

Focus on time and note duration

Generation: distribution of note features

Figure 5.3: Histograms of the note onset positions within bars (top-row), note offset positions within bars (middle-row) and note durations (bottom-row) of the generated notes. There are 32 possible positions within a bar, numerated from 0 (beginning of bar) to 31 (last 32th note). The durations are expressed in beats, ranging from a 32th note to 8

- TimeShift + Duration —> even onset positions
- In all cases we see a decreasing density of high positions, which is accented with Bar / Position
- NoteOff —> Longer durations
 - Because the models can • « forget » the notes previously being played

Unended notes with NoteOff tokens

Continuation of the same prompt with the four strategies during training

Distribution (density) of note durations in beat

Byte Pair Encoding : improving model efficiency and results

The problem of unused embedding space

• Embedding vectors are contextually learned by the model to represent the information carried by the tokens

Logits $\{\mathbf{h}_i \in \mathbb{R}^V\}_{i=0}^T$

- Embedding of size d (512 to 2048) •
- In music, vocabularies contain often • below 500 tokens
 - More than one dimension per tok.
 - Sub-optimal use of space
- In NLP vocabulary sizes are between 30k and 50k tokens

Embedding vectors $\{\mathbf{x}_i \in \mathbb{R}^d\}_{i=0}^T$

Token sequence $\{x_i \in [0, V]\}_{i=0}^T$

word embeddings

The problem of sequence length

- Music is tokenized into large sequence lengths
 - 2 or 3 tokens per note
- The complexity of Transformer models grows quadratically with the input sequence length
 - The « scope » of music is short
 - And / or model efficiency is bad
- The problem has been tackled by methods merging embeddings
 - Limited / constraining in practice

Sheet music and its « MIDI-Like » token sequence equivalent

Architecture of Compound Word Transformer (Hsiao et al.)

Byte Pair Encoding (BPE)

- Compression technique (Philip Gage) that iteratively replaces the most recurrent successive bytes of a corpus by newly created symbols
- Increase the vocabulary while reducing (compressing) the sequence length
- Widely used in NLP to build vocabularies of words from corpuses of characters (Sennrich et al.)
 - Words are the most recurrent byte successions
- Can tackle both the sequence length and embedding space usage problems

Iteration	Sequence	Vocabulary
0	ababcabc	{a, b, c}
1	ab ab c ab c	{a, b, c, ab}
2	ab abc abc	{a, b, c, ab, abc}
3	ababc abc	{a, b, c, ab, abc, ababc}
4	ababcabc	{a, b, c, ab, abc, ababc, ababca

Sequence length reduction

	Voc.	size	tokens/	beat (↓)	Tok. t	ime (↓)	Detok. time (\downarrow)		
Strategy	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	
No BPE	149	162	18.5	19.1	0.174	0.151	0.031	0.039	
BPE 1k	1k	1k	9.3 (-49.5%)	10.4 (-45.3%)	0.187	0.163	0.053	0.063	
BPE 5k	5k	5k	7.0 (-62.2%)	8.5 (-55.2%)	0.181	0.165	0.053	0.064	
BPE 10k	10k	10k	6.3 (-66.0%)	7.7 (-59.7%)	0.183	0.164	0.052	0.065	
BPE 20k	20k	20k	5.8 (-68.9%)	6.9 (-63.9%)	0.184	0.163	0.052	0.063	
PVm	1453	1466	13.4 (-27.8%)	13.8 (-27.4%)	0.134	0.123	0.024	0.026	
PVDm	28185	28198	8.2 (-55.5%)	8.6 (-54.8%)	0.119	0.106	0.025	0.030	
CP Word		188		8.6 (-54.8%)		0.169		0.034	
Octuple		241		5.2 (-72.6%)		0.118		0.035	

Better and faster generation

	$\mathbf{TSE_{type}}(\downarrow)$		$\mathbf{TSE_{dupn}}(\downarrow)$		$\mathbf{TSE_{time}}(\downarrow)$		Hum. Fidelity (↑)		Hum. Correctness (†)		Hum. Diversity (\uparrow)		Hum. Overall (\uparrow)	
Strategy	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI
No BPE	1.53	1.34	4.19	5.59	-	28.93	4.9%	4.0%	2.0%	2.0%	1.0%	0.0%	4.8%	0.0%
BPE 1k	1.59	0.62	3.60	4.16	-	34.65	13.6%	11.9%	11.8%	14.9%	10.8%	6.8%	8.6%	8.6%
BPE 5k	0.31	0.38	3.28	4.10	-	39.25	21.4%	31.7%	20.6%	21.8%	11.8%	11.7%	20.0%	18.1%
BPE 10k	0.49	1.04	3.83	6.39	-	48.16	23.3%	20.8%	29.4%	22.8%	18.6%	20.4%	22.9%	29.5%
BPE 20k	0.38	0.64	4.09	3.60	-	52.00	29.1%	19.8%	29.4%	24.8%	36.3%	34.0%	30.5%	30.5%
PVm	2.45	2.99	16.90	16.33	-	36.31	2.9%	2.0%	2.9%	0.0%	7.8%	2.9%	4.8%	1.0%
PVDm	0.63	6.32	2.84	10.64	-	46.75	4.9%	9.9%	3.9%	11.9%	13.7%	21.4%	8.6%	12.4%
CPWord		6.15		28.55		62.15		0.0%		2.0%		2.9%		0.0%
Octuple		-		244.11		305.43		0.0%		0.0%		0.0%		0.0%

Table 2: Metrics of generated results. TSE results are all scaled at e^{-3} for better readability. Hum stand for human, "-" for non-concerned (i.e. 0).

• Generated examples here (anonymized URL): <u>ugtqphgirx.github.io/bpe-symbolic-music/</u>

Better and faster generation

	tok/s	sec (†)	beat/	$sec (\uparrow)$	note/	′sec (↑)	Voc. sai	mpled (\uparrow)
Strategy	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI
No BPE	40.2	43.8	4.5	9.9	10.6	10.9	100%	100%
BPE 1k	78.5	67.0	13.0	17.9	20.8	16.8	100%	99.9%
BPE 5k	99.1	83.9	12.8	30.0	26.7	20.7	100%	99.8%
BPE 10k	97.5	85.4	12.5	26.0	26.3	21.3	99.9%	99.9%
BPE 20k	115.6	91.7	12.9	24.9	31.5	22.7	99.4%	99.7%
PVm	59.3	58.1	8.2	12.2	15.9	14.9	99.3%	99.0%
PVDm	89.7	87.3	11.4	17.1	24.7	23.4	75.9%	74.3%
CPWord		75.8		15.2		19.0		76.7%
Octuple		-		14.3		58.5		57.4%

Table 3: Inference speeds (V100 GPU) and ratio of vo- Table 4: Average accuracy of classification models. cabulary sampled during generation. For tok/sec, the

• Generated examples here (anonymized URL): <u>ugtqphgirx.github.io/bpe-symbolic-music/</u>

A better usage of embedding space

		Isosco	ore (†)			PCA I	D (†)		FisherS ID (†)				
	Gen / Maestro		Pt. / MMD		Gen / Maestro		Pt. / MMD		Gen / Maestro		Pt. / MMD		
Strategy	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	TSD	REMI	
No BPE	0.899	0.883	0.925	0.730	62	66	44	45	5.4	5.2	8.1	7.9	
BPE 1k	0.919	0.953	0.981	0.986	100	99	113	102	7.3	6.7	15.5	12.2	
BPE 5k	0.965	0.962	0.989	0.989	131	119	145	119	9.0	8.6	16.7	13.7	
BPE 10k	0.973	0.973	0.991	0.993	132	118	164	118	9.8	9.6	18.3	15.2	
BPE 20 k	0.976	0.981	0.993	0.995	146	122	187	137	10.8	10.5	2 1.4	16.9	
PVm	0.987	0.989	0.961	0.961	71	67	52	52	7.1	6.8	13.9	14.7	
PVDm	0.945	0.942	0.898	0.909	38	39	98	87	4.4	4.4	24.1	22.8	

Table 6.5: Isoscore, and intrinsic dimension (ID) estimations. Gen. corresponds to the causal generative models, Pt. to the pretrained bidirectional models.

Use BPE!

- Faster training and generation
- Better results, better use of model space
- Already fully implemented in MidiTok, backed by etokenizers (superfast Rust implementation)
- Slightly longer tokenization / detokenization

NATHAN FRADET - 25 SEPT. 2023

Bibliography

- Hadjeres G., & Crestel, L. (2021). The Piano Inpainting Application. •
- Schedl Markus, et al. Music Information Retrieval: Recent Developments and Applications, 2014. •
- Gardner, Joshua P., et al. "MT3: Multi-Task Multitrack Music Transcription." ICLR, 2022 •
- Dong H.-W., et al. "MuseGAN: Multi-Track Sequential Generative Adversarial Networks for Symbolic Music Generation and • Accompaniment". Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018
- Huang Cheng-Zhi Anna, et al. "Counterpoint by Convolution." ISMIR, 2017 •
- Huang Yu-Siang, and Yi-Hsuan Yang. "Pop Music Transformer: Beat-Based Modeling and Generation of Expressive Pop Piano Compositions." Proceedings of the 28th ACM International Conference on Multimedia, 2020
- Von Rütte Dimitri, et al. "FIGARO: Controllable Music Generation Using Learned and Expert Features." ICLR 2023
- Gao Tianyu, et al. "SimCSE: Simple Contrastive Learning of Sentence Embeddings.", EMNLP 2021, pp. 6894–910 •
- Hsiao W.-Y., et al. "Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs". • AAAI Conference on Artificial Intelligence, vol. 35, no. 1, May 2021, pp. 178-86
- Gage Philip. "A New Algorithm for Data Compression." C Users J., vol. 12, no. 2, R & D Publications, Inc., Feb. 1994
- Sennrich, Rico, et al. "Neural Machine Translation of Rare Words with Subword Units." ACL 2016, pp. 1715–25 •

Deep Learning for Symbolic Music Modeling

NATHAN FRADET - 25 SEPT. 2023

Any questions?